Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Cell Infect Microbiol ; 12: 988604, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-20243442

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunidad Innata , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos
2.
Adv Sci (Weinh) ; 10(19): e2205058, 2023 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2296666

RESUMEN

The oral bacteriome, gut bacteriome, and gut mycobiome are associated with coronavirus disease 2019 (COVID-19). However, the oral fungal microbiota in COVID-19 remains unclear. This article aims to characterize the oral mycobiome in COVID-19 and recovered patients. Tongue coating specimens of 71 COVID-19 patients, 36 suspected cases (SCs), 22 recovered COVID-19 patients, 36 SCs who recovered, and 132 controls from Henan are collected and analyzed using internal transcribed spacer sequencing. The richness of oral fungi is increased in COVID-19 versus controls, and beta diversity analysis reveals separate fungal communities for COVID-19 and control. The ratio of Ascomycota and Basidiomycota is higher in COVID-19, and the opportunistic pathogens, including the genera Candida, Saccharomyces, and Simplicillium, are increased in COVID-19. The classifier based on two fungal biomarkers is constructed and can distinguish COVID-19 patients from controls in the training, testing, and independent cohorts. Importantly, the classifier successfully diagnoses SCs with positive specific severe acute respiratory syndrome coronavirus 2 immunoglobulin G antibodies as COVID-19 patients. The correlation between distinct fungi and bacteria in COVID-19 and control groups is depicted. These data suggest that the oral mycobiome may play a role in COVID-19.


Asunto(s)
COVID-19 , Microbiota , Micobioma , Humanos , Bacterias
3.
Mil Med Res ; 9(1): 32, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1962906

RESUMEN

BACKGROUND: Due to the outbreak and rapid spread of coronavirus disease 2019 (COVID-19), more than 160 million patients have become convalescents worldwide to date. Significant alterations have occurred in the gut and oral microbiome and metabonomics of patients with COVID-19. However, it is unknown whether their characteristics return to normal after the 1-year recovery. METHODS: We recruited 35 confirmed patients to provide specimens at discharge and one year later, as well as 160 healthy controls. A total of 497 samples were prospectively collected, including 219 tongue-coating, 129 stool and 149 plasma samples. Tongue-coating and stool samples were subjected to 16S rRNA sequencing, and plasma samples were subjected to untargeted metabolomics testing. RESULTS: The oral and gut microbiome and metabolomics characteristics of the 1-year convalescents were restored to a large extent but did not completely return to normal. In the recovery process, the microbial diversity gradually increased. Butyric acid-producing microbes and Bifidobacterium gradually increased, whereas lipopolysaccharide-producing microbes gradually decreased. In addition, sphingosine-1-phosphate, which is closely related to the inflammatory factor storm of COVID-19, increased significantly during the recovery process. Moreover, the predictive models established based on the microbiome and metabolites of patients at the time of discharge reached high efficacy in predicting their neutralizing antibody levels one year later. CONCLUSIONS: This study is the first to characterize the oral and gut microbiome and metabonomics in 1-year convalescents of COVID-19. The key microbiome and metabolites in the process of recovery were identified, and provided new treatment ideas for accelerating recovery. And the predictive models based on the microbiome and metabolomics afford new insights for predicting the recovery situation which benefited affected individuals and healthcare.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Estudios de Seguimiento , Humanos , Metabolómica , ARN Ribosómico 16S/genética
4.
Adv Sci (Weinh) ; 8(20): e2102785, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1366208

RESUMEN

Respiratory tract microbiome is closely related to respiratory tract infections, while characterization of oropharyngeal microbiome in recovered coronavirus disease 2019 (COVID-19) patients is not studied. Herein, oropharyngeal swabs are collected from confirmed cases (CCs) with COVID-19 (73 subjects), suspected cases (SCs) (36), confirmed cases who recovered (21), suspected cases who recovered (36), and healthy controls (Hs) (140) and then completed MiSeq sequencing. Oropharyngeal microbial α-diversity is markedly reduced in CCs versus Hs. Opportunistic pathogens are increased, while butyrate-producing genera are decreased in CCs versus Hs. The classifier based on eight optimal microbial markers is constructed through a random forest model and reached great diagnostic efficacy in both discovery and validation cohorts. Notably, the classifier successfully diagnosed SCs with positive IgG antibody as CCs and is demonstrated from the perspective of the microbiome. Importantly, several genera with significant differences gradually increase and decrease along with recovery from COVID-19. Forty-four oropharyngeal operational taxonomy units (OTUs) are closely correlated with 11 clinical indicators of SARS-CoV-2 infection and Hs based on Spearman correlation analysis. Together, this research is the first to characterize oropharyngeal microbiota in recovered COVID-19 cases and suspected cases, to successfully construct and validate the diagnostic model for COVID-19 and to depict the correlations between microbial OTUs and clinical indicators.


Asunto(s)
COVID-19/microbiología , Microbiota , Orofaringe/microbiología , SARS-CoV-2 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA